
Security-Enhanced Linux (SELinux) Case
Study

John Bush and Heather Romero

INF-527

University of Southern California

October, 2015

What is SELinux?

 Started as research project in the 1990’s by the NSA and Secure
Computing Corporation (now owned by McAfee)
 Result of prior research in the 1980s in high-assurance operating systems.
 Problem: Realization software is inherently flawed (The Inevitability of Failure: The

Flawed Assumption of Security in Modern Computing Environments")
 Goal: To provide a more secure underlying operating system be implementing

Mandatory Access Controls.
 “Flask Architecture” renamed to SELinux and released to the public under the GNU GPL

in 2000.

 SELinux has been added to various Linux distributions (Fedora,
OpenSuse, Ubuntu) to encourage open-source development and
adoption.

 Its architecture strives to separate enforcement of security decisions from
the security policy itself and streamlines the volume of software charged
with security policy enforcement.

SELinux Overview

 Replaces user-based model with a policy-based model
 All actions reading and writing data are controlled by a security policy

 Separates the applications and processes executing on the system
(applications are provided own view of resources through namespaces)
 Isolates attack
 Limits the damage of compromised software

 Original NSA policy was known as strict policy
 Followed whitelist concept: default was to deny applications access unless specifically

allowed
 Requires maintenance to keep list updated
 Works well in strict regulated environments, but does not work well on regular desktops

 To improve on strict policy, targeted policy was introduced (Fedora Core 3)
 List of Deny statements
 Allowed all actions given by a user except the targeted list

 Protected critical applications, network processes

Design Objectives

 Intended to demonstrate the ability to add MAC to Linux

 Three types of Security Models:
 Type Enforcement (TE)

 SELinux uses type enforcement to constrain individual processes (subjects)
to defined rules, rather than run at the permissions of of the standard Linux
user level who called them.

 Ex: a root user calls a text editor, that editor now runs at root privileges, the
same as the user.

 Role-Based Access Control (RBAC)
 Each user gets a set of roles
 Each role is assigned a set of TE domains

 Traditional Multi-Level Security (MLS)
 the Bell-LaPadula model (clearances, classifications, and categories)

SELinux Architecture

 Security-Enhanced Linux (SELinux) is a Linux kernel security
module (not its own operating system) that provides a mechanism
for supporting access control security policies, specifically
mandatory access controls (MAC).

 Linux Security Modules (LSM)
 LSMs are additional frameworks

added to the Linux security kernel.
 Four official LSM’s exist:

 SELinux
 AppArmor
 Smack
 TOMOYO

 Provide “hooks” which are
system interrupts that occur
after an access request is made.
 Directs the access request

to the configured module (SELinux)
 Occurs after DAC

MAC

DAC

TCB Boundary

Access-Request Architecture

Image from “SELinux Cookbook” by Sven Vermeulen

Policy

 Policy is the set of rules for accessing data/processes
 Types are defined for data objects
 Domains are defined for processes

 The policy uses roles to limit the domains that can be entered
and user identities to specify the roles that can be attained

 Policy Changes
 Adding users
 Adding permissions
 Adding programs to an existing domain
 Creating a new domain
 Creating a new type
 Creating a new role

Policy Module Example

 Source-code for policy file is: WiresharkCapture.te

 Compiled policy module is: WiresharkCapture.pp

policy_module(WiresharkCapture, 1.0.0) <header and policy name>

##
#
Declarations
#

Type wireshark_t; <“types” are declared>
type network_eth0_config_t;

##
#
Local policy
#

allow wireshark_t network_eth0_config_t:file { read write getattr };
<allow rule between types>
<defines modes of access>

SELinux Modes

 Enforcing
 SELinux policy is enforced. SELinux denies access based on SELinux

policy rules.

 Permissive
 SELinux policy is not enforced. SELinux does not deny access, but

denials are logged for actions that would have been denied if
running in enforcing mode.

 Disabled
 SELinux is disabled. Only Linux system DAC rules are used.

Access Control in Linux vs SELinux
 Standard Linux

 Is DAC only
 Subjects contain a user/group

ID.
 ex: user “Schell” is a member of the

“Faculty” group

 Objects contain a similar
user/group ID.
 Ex: file “grades.txt” contains:

 Owner = Schell
 Group = Faculty
 Others = specifics “everyone else”

 Schell owns the file, but anyone in
the faculty Group has some form of
defined access.

 Access is a combination of:
 Read, Write, and/or Execute

 SELinux
 DAC is always checked first.

 If DAC access is disallowed SELinux is
not referenced.

 Access decided through Type
Enforcement
 All subjects and objects have an

associated “security context”.
 Is essentially a label:
 user:role:type:level
 Note: generally only “type” is compared.

 The subject’s security context is
compared against the object’s
security contact.
 “Is this subject type allowed to access

this object type?”

 Access granted only if both DAC is
allowed and appropriate Type
Enforcement exists.

Label Comparison: TE vs BLP

 Bell-LaPadula:
 Clearances

 Subject = unclassified, secret,
topsecret

 Classifications
 Object = unclassified, secret,

top-secret

 Categories
 Further constrains access by a

group.
 Ex: NUCLEAR, EUROPE, MISSLE

 Access
 *-Property: No writing down
 SSC: No reads up

 SELinux Security Context:
 Users

 Is a collection of Roles
 Ex: faculty_r, staff_r, professor_r

 Roles
 Similar to a Unix group ID

 Types
 Similar to domains
 Subjects/Objects with the same type are in the same domain.
 Rules in policy files allow cross-domain (type) access

 Levels
 Consists of a sensitively level and category (access class)
 Ex: level = s0:c0.c2, c4

 s0 = sensitively level
 Is hierarchical

 c0.c2 = categories 0,1,2
 c4 = and category 4

 Alias names can be assigned to categories.
 Are non-hierarchical Note: again, in SELinux only Type(s) are

generally compared unless in MLS enforcement.

Type Enforcement Example
 Apache Web-server:

 Linux commands for viewing security context:
 ls –Z filename displays security context of a file
 ps –Z processname displays security context of a process
 id –Z username displays security context of a user

 Apache Webserver
 The Apache server process is of type: httpd_t
 A configuration file for Apache is of the type: httpd_config_t
 Question: Should security context allow access between process/file?

 /etc/shadow file
 The local shadow file (storing hashed passwords) is of type: shadow_t
 Question: Should security context allow access between Apache/shadow?

 Discussion:
 Type enforcement = comparison of a subject type (domain) to an object

type (domain).
 Is this really Mandatory Access, or additional Discretionary Access?

SELinux Security

 Administratively defined and not set at user discretion

 Clean separation of policy from enforcement (well-defined
policy interfaces)
 Policy rules define how processes interact with data and other

processes

 Access control across all types of users and groups

 Lower vulnerability to privilege escalation attacks
 attacker can only gain access to data and processes allowed by

the normal policy

 Can be used to enforce data confidentiality and integrity
 Type enforcement = integrity policy
 MLS = Confidentiality policy

Properties of Secure Systems

 Reference Monitor
 Always invoked

 the policy of the SELinux is always invoked to access data/processes
 Tamper-proof

 separation of applications/processes, MAC
 Verifiable

 Too complex

 TCB (code design)
 Layering
 Information hiding
 Minimalization

Usability of SELinux

 Most well known MAC system in Linux operating systems
 Red Hat and Fedora come with comprehensive policies

 Still not widely used in desktop environments
 Typical configuration contains ~100,000 rules

 Subject Type to Object Type access rights are “1 to 1” for each
relationship (rule).

 Creates a large number of access rights!!!
 Requires a lot of maintenance – policy changes/fine-tuning
 Creating a policy from scratch is very complex - requires expert

knowledge of the OS and security policies

SELinux Alert Example

Alerts can be confusing and
vague.

SELinux Alerts and Errors
 What is an Alert?

 An action has occurred which violates your policy.

 RedHat Summit 2012: SELinux for Mere Mortals (Video)
 Four types of common errors:

 1.) Incorrect labeling
 Admin error of incorrectly labeling, or not labeling, types.
 Use SELinux logs/alert messages to determine the access attemp.
 As root re-label subjects/objects

 2.) Policy out-of-date:
 Admin has made a system change and now policy is needs update.
 Ex: installed new application which wasn’t available at original policy

creation.

 3.) Bug in the policy
 The Linux distribution has an error in its default policy.
 Fixed with a ticket to developer for a patch.
 Not good!

 4.) System is under attack

Subversion
 Discussion: How would an adversary attack the system?
 Changes against the Policy:

 Change/copy the policy file (/etc/selinux/…)
 Or at least view it: Fedora 22: DAC policy allows

global read access
 Adversary could look for flaws in policy.

 All access denied by default, but someone must
have access to change policy
 Loss of administrator (root) credentials (theft, brute-

force, guess) results in system compromise.
 Insider threat

 Change the label (security context) of a
subject/object
 Or move an object off of the current SELinux

environment!
 Will no longer be protected.

 Audit2allow command
 Designed by administrators to quickly and

automatically set “allow” rules based on denial
logs.

 Human factor: annoying alerts are easily turned off,
but is the allow fully understood?

 Risk of backdoors/malware
 Each Linux distribution includes its own SELinux

policy set (who verifies?)

 Cannot verify all of the Linux source code

 Trusted distribution
 Attack integrity of installation/source files

 Was the distribution acquired through bit-
torrent? Checksum verified?

 Attack integrity of file/system updates

 Open source development, inserting of
malicious code?

System Comparison

 Conceptual difference between SELinux and GEMSOS
 SELinux separates the policy from the enforcement mechanism
 The mechanism consults the policy in order to enforce
 Policy can be completely removed and replaced without changing

the architecture.
 Provides greater flexibility, but greater risk for subversion

 GEMSOS is a system designed around the policy
 Focus is on designing a system and its mechanism as one.
 Less flexibility, but less risk for subversion.

 Comparison against other Linux Security Modules (LSM).
 AppArmor (http://apparmor.net)
 Smack (http://schaufler-ca.com/)
 TOMOYO (http://tomoyo.osdn.jp)

 Big differences vs SELinux:
-level of industry backing/development.
-types of labeling (object labels vs file-paths).
-definition of objects.
-support for MLS.

SELinux in a High Assurance Environment

 TCSEC M-Component A1 Requirements
Requirement SELinux GEMSOS Requirement SELinux GEMSOS

1 – OBJECT REUSE No. Memory wiping not mentioned. YES 14 – COVERT CHANNEL ANALYSIS No. YES

2 - LABLES YES YES 15 – TRUSTED FACILITY MANAGEMENT No. Subversion threat! N/A

3 – LABEL INTEGRITY No. No mention of cryptographic
bindings of labels to objects.

YES 16 – TRUSTED RECOVERY No. YES

4 – EXPORT. LABEL INFO. Unknown.. Does TE information
export? Does second system support
same policy enforcement?

N/A. Single Level Only 17 – SECURITY TESTING No. No documentation online as to
SELinux testing results.. Assurance
problem.

YES

5 – EXPORT. TO MULT-DEVICES No. Not defined as of requirement #4. N/A. Single Level Only 18 – DESIGN SPEC. VERIFICATION No. No FTLS exists (not possible to
map SELinux back to a FTLS as it runs
on an untrusted Unix environment).

YES

6 – EXPORT TO SINGLE-DEVICES No. Not defined as of requirement #4. YES 19 – CONFIGURATION MANAGEMENT No. There is no configuration
management plan or guidance as to
how the system is/should-be
configured, only trust the distributer
“got it right”.

YES

7 – LABEL HUMAN READABLE No. Labels are not included on any
printed output.

N/A 20 – TRUSTED DISTRIBUTION No. Subversion threat! YES

8 – SUBJECT SENSIVITY LEVLES No. Subject sensitively labels
changed by an administrator. No
notification practices are defined to
administrator/user.

N/A 21 – SECURITY FEATURES USER GUIDE Yes. - Fedora 22 SELinux User’s and
Administrator’s Guide

YES

9 – DEVICE LABELS No. Labels YES 22 – TRUSTED FACILITY MANUAL Kind of. Documentation on
maintenance and configuration
available online and in printed
publications. Are all sources trusted?

YES

10 - MAC YES YES 23 – TEST DOCUMENTATION No. No test documentation found
online.. Assurance issue.

YES

11 – TRUSTED PATH No. YES 24 – DESIGN DOCUMENTATION YES. Reasonable documentation on
Flask and SELinux architecture.

YES

12 – SYSTEM ARCHITECTURE No. The underlying TCB (hardware,
firmware, Unix code) is not verified.

YES 25 - RAMP Depends on the long-term support of
the distributor.

YES

13 – SYSTEM INTEGRITY No. Not possible to verify hardware or
firmware in system designed to be
multi-platform.

YES

“This work is not intended as a complete security solution. It is not an attempt to correct any flaws that may
currently exist in an operating system. Instead, it is simply an example of how mandatory access controls
that can confine the actions of any process…” –NSA.gov https://www.nsa.gov/research/selinux/

https://www.nsa.gov/research/selinux/

Assurance

 SELinux Assurance Questions
 How do you verify SELinux is configured and functioning properly?
 How do you verify the trust of SELinux source code for correct

implementation?

 System flexibility comes at an assurance cost.
 How do you know you have CORRECTLY created a rule for every

type of scenario?

Creating the rules is not difficult, “..the challenge is determining
the many thousands of accesses one must create to permit the
system to work...” -Book: “SELinux by Example”

Discussion

 SELinux is obviously not GEMSOS
 Problems:

 Does not meet the TESEC requirements for A-1
 Is not verifiable. Low Assurance / High Subversion factor.
 Requires expert technical knowledge for policy creation.

 Question:
 1.) Should it be used? If so, by who?

 Can a home internet user rely on SELinux for protection?

 Fedora 22: User and applications run at the unconfined_u/r

 Can a system admin protect his responsible network with SELInux?

 Can your system admin build your corporate policy?

 Trust on RedHat/Fedoras?

 2.) Does SELinux provide an enhancement to modern computer security?
 Would Target/Sony/HomeDepot/OPM/…. breaches been prevented?

 If your system is infected with a virus… what will it have access to?

Practical Example

 Virtual Machine Exercise

 Fedora 22 with SELinux installation

 Two objectives:
 Setup type enforcement to prevent an application running at

administrative privileges (root) from opening a file.
 Create a MLS rule to provide confidentiality between three users

and three files at different clearance/classification levels.

 Accomplished by:
 Writing a basic level SELinux policy module for type enforcement.
 Labeling objects.
 Assigning clearances to subjects.

 File is located on Google Drive (4.5Gb)

Further Reading
 Dan Walsh of RedHat

 Main developer for writing SELinux policy
 Blog: http://danwalsh.livejournal.com

 Contains examples of SELinux polices
 Addresses SELinux vs multiple modern-day threats and exploits

 Russell Coker of RedHat
 SELinux developer, author and presenter
 Website: http://www.coker.com.au/selinux/

 Contains past lecture material, SELinux resources, and a virtual machine test environment.

 RedHat - SELinux for Mere Mortals (video)
 RedHat 2012/2013 Summits
 Introduction to SELinux series by Thomas Cameron (Chief Architect SELinux Canada and USA)
 2013 Summit: https://www.youtube.com/watch?v=bQqX3RWn0Yw
 2012 summit: https://www.youtube.com/watch?v=MxjenQ31b70

 Eli Billauer
 Freelance electrical engineer
 Website: http://www.billauer.co.il/selinux-policy-module-howto.html
 Best example of writing a simple policy module

http://danwalsh.livejournal.com/
http://www.coker.com.au/selinux/
https://www.youtube.com/watch?v=bQqX3RWn0Yw
https://www.youtube.com/watch?v=MxjenQ31b70
http://www.billauer.co.il/selinux-policy-module-howto.html

References
 Beijing Jiaotong University: Zhai, Wu, “Automatic Analysis Method for SELinux Security Policy”. April 2012.

http://www.tdeig.ch/SELinux/Publications/Analysis_Method.pdf

 Beijing University of Technology: Xu, Xiao, Chuangbai Xiao, Chaoqin Gao, and Guozhong Tian. "A Study on Confidentiality and
Integrity Protection of SELinux." 2010 International Conference on Networking and Information Technology (2010): n. pag. Web.
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5508513.

 FedoraProject: "SELinux User's and Administrator's Guide." Fedora 22. FedoraProject.org, 2014. Web.
<https://docs.fedoraproject.org/en-US/Fedora/22/html/SELinux_Users_and_Administrators_Guide/index.html>.

 IBM DeveloperWorks: Ivashko, “Secure Linux: Part 1. SELinux – history of its development, architecture and operating principles.”
May 2012. http://www.ibm.com/developerworks/library/l-secure-linux-ru/l-secure-linux-ru-pdf.pdf

 NUCES: Khan, Kashif, Muhammad Admin, Abbas Afridi, and Waqas Shehzad. "SELinux IN and OUT." IEEE Xplore. National
University of Computer & Emerging Sciences (NUCES), May 2011. Web.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6014064.

 NSA: "Loscocco, Smalley, Muckelbauer, Taylor, Turner, and Farrell. "The Inevitability of Failure: The Flawed Assumption of Security
in Modern Computing Environments." 21st National Information Systems Security Conference. The University of Utah, Oct. 1998.
Web. <http://www.cs.utah.edu/flux/fluke/html/inevitability.htm>.

 NSA: Smalley, Vance, and Salamon. "Implementing SELinux as a Linux Security Module." Original NSA Publication (n.d.): n. pag.
University Bologna. May 2002. Web. <http://www.cs.unibo.it/~sacerdot/doc/so/slm/selinux-module.pdf>

 PennState: Hanson, Chad. "SELinux and MLS: Putting the Pieces Together." PennState, n.d. Web.
<http://www.cse.psu.edu/~trj1/cse543-f07/papers/SELinux-MLS.pdf>.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5508513
http://www.ibm.com/developerworks/library/l-secure-linux-ru/l-secure-linux-ru-pdf.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6014064

References
 RedHat: Ančincová, Barbora. "Security-Enhanced Linux User Guide." Red Hat Enterprise Linux 6 Security-Enhanced Linux.

RedHat, n.d. Web. <https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-
Enhanced_Linux/index.html>.

 RedHat: Cameron, Thomas. "2012 Red Hat Summit: SELinux For Mere Mortals." 2012 Red Hat Summit: SELinux For Mere Mortals.
RedHat, n.d. Web. 2012. https://www.youtube.com/watch?v=MxjenQ31b70.

 UNC Charlotte and Samsung: Ahn, Gail-Joon, Wenjuan Xu, and Xinwen Zhang. "Systematic Policy Analysis for High-assurance
Services in SELinux." 2008 IEEE Workshop on Policies for Distributed Systems and Networks. Sefcom, 2008. Web.
http://sefcom.asu.edu/publications/systematic-policy-analysis-policy2008.pdf.

 usenix.org: Write, Chris, Crispin Cowan, James Morris, Stephen Smalley, and Greg Kroah-Hartman. "Linux Security Modules:
General Security Support for the Linux Kernel." Usenix.org, 2002. Web.
<https://www.usenix.org/legacy/events/sec02/full_papers/wright/wright.pdf>

 SELinux Cookbook: Vermeulen, Sven. SELinux Cookbook. Vol. 1. Birmingham, Mumbai: PACKT, 2014. Print.

 SELinux By Example: Mayer, Frank, Karl MacMillan, and David Caplan. SELinux by Example: Using Security Enhanced Linux.
Upper Saddle River, NJ: Prentice Hall, 2007. Print.

 The University of Utah: Spencer, Ray, Stephen Smalley, Peter Losocco, Mike Hibler, David Andersen, and Jay Lepreau. "The Flask
Security Architecture: System Support for Diverse Security Policies : Flux Research Group." The Flask Security Architecture: System
Support for Diverse Security Policies. The University of Utah, 1999. Web. https://www.flux.utah.edu/paper/spencer-security99.

 Wikipedia: "Security-Enhanced Linux." Wikipedia. Wikimedia Foundation, n.d. Web. 26 Sept. 2015. Web.
https://en.wikipedia.org/wiki/Security-Enhanced_Linux.

https://www.youtube.com/watch?v=MxjenQ31b70
http://sefcom.asu.edu/publications/systematic-policy-analysis-policy2008.pdf
https://www.flux.utah.edu/paper/spencer-security99
https://en.wikipedia.org/wiki/Security-Enhanced_Linux

	Security-Enhanced Linux (SELinux) Case Study
	What is SELinux?
	SELinux Overview
	Design Objectives
	SELinux Architecture
	Access-Request Architecture
	Policy
	Policy Module Example
	SELinux Modes
	Access Control in Linux vs SELinux
	Label Comparison: TE vs BLP
	Type Enforcement Example
	SELinux Security
	Properties of Secure Systems
	Usability of SELinux
	SELinux Alert Example
	SELinux Alerts and Errors
	Subversion
	System Comparison
	SELinux in a High Assurance Environment
	Assurance
	Discussion
	Practical Example
	Further Reading
	References
	References

