
DSci526:
Secure Systems Administration

Linux Administration
Accreditation and Acceptance

Prof. Clifford Neuman

Lecture 12
14 April 2021
Online

Announcement

• Alternate Schedule for April 21st Lecture
– Wednesday 21 April

– 10:30AM to 1:50PM

– Same Zoom Link

1

Agenda

1405-1535 Linux Administration
Alejandro Najera -> Administration

Tejas Pandey -> Identity Management

Ayush Ambastha -> Kernel Security

Azzam Alaseed -> SELinux

1535-1545 Break

1545-1645

1645-1650 General Class Discussion of Second Group Project

1650-1655 Second Project Briefing by Team 1

1655-1700 Second Project Briefing by Team 2

1700 Breakouts for Second Group Project

2

Linux Presentation
Alejandro Najera -> Administration
Tejas Pandey -> Identity Management
Ayush Ambastha -> Kernel Security
Azzam Alaseed -> SELinux

April 14th, 2021DSCI526: Secure Systems Administration

Linux
System Administration

Alejandro Najera

Linux: Administration

The Linux System Administrator

Responsibilities & Common Duties:

● Auditing

○ Logging

● Monitoring

○ Host & Network

● High Availability

○ Clustering

Linux: Administration

Auditing & Logging

Critical security component of any system:

Types of Logs:

● Operating System

● Application

● Storage & Database

● Infrastructure

● Administration

Goals of Auditing:

● Compliance

● Security

● Forensics

Linux: Administration

Auditing & Logging in Linux

Default log location on Host: /var/log

Host Logs:

● wtmp

● utmp

● dmesg

● messages

● maillog or mail.log

● spooler

● auth.log or secure

Centralized Logging:

● Syslog

● Syslog-ng

● Rsyslog

Linux: Administration

Auditing & Logging in Linux

Linux: Administration

Monitoring

Detect and Respond to Cyber Threats:

● Host Monitoring

○ Removable Media

○ File Integrity

○ Malware

● Network Network

○ Intrusion Detection

○ Intrusion

Prevention

○ SIEM

○ Asset Management

Goals of Monitoring:

● Survey

● Audit

● Assess

Linux: Administration

Monitoring in Linux

Open Source Tools : ● Nagios

○ Monitors systems,

networks & infrastructure

● ClamAV

○ Open-Source AntiVirus

● USBGuard

○ Removable Media Policy

& Enforcement

● OSSEC

○ HIDS, File Integrity

Linux: Administration

Monitoring in Linux

Linux: Administration

High Availability

Reduce the impact of service interruptions:

Goals of High Availability:

● Eliminate single point of failure

● Provide continued service

when system components fail.

Components:

● Backups

● Load balancing

● Redundancy

Linux: Administration

High Availability in Linux

Tools & Methods:

● Amanda backup &

recovery

● Clustering w/ Corosync

& Pacemaker

● Fencing

Linux: Administration

High Availability in Linux

Linux: Administration

References (Linux Administration)

› http://www.linuxtopia.org/online_books/linux_administ

rators_security_guide/

› https://access.redhat.com/documentation/en-us/

› https://learning.oreilly.com/api/v1/dashboard/continue

/linuxbasicsforhackers/

› https://learning.oreilly.com/api/v1/continue/unixandlin

uxsystemadministrationhandbook/

› https://securityonionsolutions.com/software/

http://www.linuxtopia.org/online_books/linux_administrators_security_guide/
https://access.redhat.com/documentation/en-us/
https://learning.oreilly.com/api/v1/dashboard/continue/linuxbasicsforhackers
https://learning.oreilly.com/api/v1/continue/9780134278308/
https://securityonionsolutions.com/software/

Identity Management in Linux

Tejas Pandey

What is Identity Management?

● The practice of managing access to enterprise
resources to keep systems and data secure

● Is one of the key component in security architecture,
as it can help verify users’ identities before granting
them the right level of access to resources

17

Challenges
● Problem with traditional identity management (IdM)

approaches:
○ Password Fatigue - move to SaaS and cloud-based

microservices, each application with own identity store
and password requirements for login. User has to manage
multiple identities, diminishing productivity, risk of reuse.

○ Failure prone onboarding and offboarding process -
accounts managed at department level, access granted by
application administrator
■ Where are users stored?
■ What properties/attributes do the have?
■ How can services and systems access this data?

18

Challenges
● Compliance and audit - no clear visibility in terms of user

access, audit trail and security policies.

19

Problem Space

● Main aspects of an IdM solution:
○ Centralized Management of Identities/Security

Policies
○ Provide Various Authentication/Authorization

Mechanisms
○ Enterprise Single Sign-On
○ Compliance and Audit

20

Benefits of Identity Management

● Enterprise single sign-on
○ Without IdM:

■ Users log in to the system and are prompted for a password
every single time they access a service or application. These
passwords might be different, and the users have to
remember which credential to use for which application.

○ With IdM: After users log in to the system, they can access
multiple services and applications without being repeatedly
asked for their credentials.
■ Improve usability, increase productivity

■ Reduce the security risk of passwords being written down or
stored insecurely

21

Benefits of Identity Management

● Managing identities and policies with several Linux servers
○ Without IdM

■ Each server is administered separately. All passwords are
saved on the local machines. The IT administrator manages
users on every machine, sets authentication and authorization
policies separately, and maintains local passwords

○ With IdM
■ Maintain the identities in one central place: the IdM server
■ Apply policies uniformly to multiples of machines at the same

time
■ Set different access levels for users by using host-based access

control, delegation, and other rules
■ Centrally manage privilege escalation rules

22

The FreeIPA Project

● The Identity Policy and Audit management solution
○ Upstream version of RedHat’s Identity Management

offering
○ Combines LDAP, Kerberos, DNS and certificate management

capabilities
○ Provides centralized authentication, authorization and

identity information for Linux/UNIX infrastructure
○ Enables centralized policy and privilege escalation

management
○ Supports integration with Microsoft’s Active Directory and

Cross-realm Kerberos Trust/Authentication

23

FreeIPA vs Standard LDAP Implementation

24

FreeIPA LDAP Directory Server

Has a specific purpose: managing identities

as well as authentication and authorization

policies that relate to these identities

A general-purpose directory; it can be

customized to fit a broad range of use

cases

Schema - a specific schema that defines a

particular set of entries relevant to its

purpose, such as entries for user or

machine identities

Schema - a flexible schema that can be

customized for a vast array of entries, such

as users, machines, network entities,

physical equipment, or buildings

Typical usage - the identity and

authentication server to manage identities

within the boundaries of an enterprise or a

project.

Typical usage - a back-end directory to

store data for other applications, such as

business applications that provide services

on the Internet.

FreeIPA Architecture

25Source:

Authentication

● FreeIPA offers variety of user authentication
mechanisms, mainly:
○ Password
○ 2FA, Password + OTP (TOTP and HOTP

supported)
○ RADIUS

26

Multi Factor Authentication
Authentication Setup

27

Source:
https://www.freeipa.org/images/2/2e/Snowcampio
_2FA.pdf

Multi Factor Authentication

● Supported:
○ Yubikey (HOTP)
○ Software token (TOTP)
○ Smartcards

28

Access Control

● FreeIPA offers access control management in the
form of:
○ SUDO policy
○ Role based access control (via SUDO)
○ Host based access control
○ SELinux user and role mapping

29

Access Control (SUDO)

● Sudo policy defines:
○ Sudo options - for example, (!authenticate)
○ Who - is allowed to invoke sudo (users, user-groups)
○ Where - a user or user-group is allowed sudo privileges.

(hosts/systems)
○ What - commands can be invoked through sudo

■ Support only need to read access to logs (tail | less)
● FreeIPA supports caching of sudo rules via SSSD

○ Needed in situations where client can’t access IPA server
○ Caveat - user has to have accessed the system before;

can’t cache what you don’t know

30

Sample SUDO Policy (CLI)

● Requirement: granting sudo access on certain hosts, on all
commands:
○ ipa group-add db-admins --desc="Database Admins"

○ ipa group-add-member db-admins --users=jdoe --

users=jsmith

○ ipa sudorule-add --cmdcat=all sudo-db-admins

○ ipa sudorule-add-user --groups=db-admins sudo-

db-admins

○ ipa sudorule-add-host sudo-db-admins --

hosts=db1.example.com --hosts=db1.example.com

31

Sample SUDO Policy (GUI)

32

Access Control (HBAC)

● HBAC policy defines:
○ Which users or group of users can access
○ Which hosts or groups of hosts
○ Using which login services:

■ ssh, ftp, sftp, telnet etc..
○ Not a replacement for firewall rules!

33

Sample HBAC Policy

● Requirement: allows users in usergroup sysadm to
access hosts in hostgroup webservers
○ ipa hbacrule-add sysadmin_webservers

○ ipa hbacrule-add-host sysadmin_webservers

--hostgroup webservers

○ ipa hbacrule-add-user sysadmin_webservers

--group sysadmin

○ Test a HBAC rule:
■ ipa hbactest --host client.web1.com --

service sshd --user bob

34

Access Control (SELinux)

● SELinux mappings can be defined centrally.
● Allow different users on different systems have

different SELinux context.
● Default SELinux labels are available in FreeIPA

configuration.
● Mappings are enforced on the client (SSSD). And

cached, if needed.

35

SELinux User Capabilities

36

Audit

● Problem statement:
○ Organizations in highly regulated industries like

financial and healthcare must meet audit requirements
(accountability) for employees and contractors.

● The FreeIPA Session recording feature aims to answer the
following:
○ What user accessed the system?
○ Commands executed while inside the system
○ How can malicious activity be attributed (audit trail)?

37

Session Recording

● Client-side components:
○ Tlog-rec – recording process, invoked in place of the user's shell when

he/she logs into the system. The recording process creates a pseudo-
terminal, starts the actual user shell under it, and records everything
that passes between the pseudo-terminal and the actual user
terminal.

○ Auditd – general system auditing subsystem in Linux, which collects all
the activity related to user session in the form of the audit entries.

○ SSSD – defines users and user groups to enable Session recording for.
○ Logging server - Rsyslog, Fluentd, or Logstash – a collection agent,

which streams the audit and session recording data from the system
to data aggregation server (Elasticsearch).

38

Session Recording

● Server-side components:
○ ElasticSearch - the data storage where the session recording and audit

data can be placed and correlated.
○ Tlog-play - terminal based playback tool which can be used from the

command line to recreate the session.

39

Session Recording
Architecture

40

Source:
https://www.freeipa.org/page/Session_Recording

High Availability

● Support for Multi-master replication:
○ Information is shared between FreeIPA servers and

replicas. Multi-master means servers and replicas all
receive updates and, therefore, are data masters.

● Support for service auto-discovery and location based load
balancing:
○ Group replicas based on geolocation
○ Assign priorities to LDAP and Kerberos DNS SRV

records
○ Hosts autodiscover services based on SRV records,

queries the nearest replica based on SRV record
priority.

41

High Availability

42

Source:https://www.freeipa.org/page/V4/DNS_Loc
ation_Mechanism

References

1. https://freeipa.readthedocs.io/en/latest/index.html
2. https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/linux_domain_identity_authenti
cation_and_policy_guide/introduction

3. https://www.freeipa.org/page/Directory_Server
4. https://www.freeipa.org/page/Kerberos
5. https://www.freeipa.org/page/PKI
6. https://www.freeipa.org/page/DNS
7. https://www.freeipa.org/page/Certmonger
8. https://www.freeipa.org/page/Web_UI
9. https://www.freeipa.org/page/Trusts

43

https://freeipa.readthedocs.io/en/latest/index.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/introduction
https://www.freeipa.org/page/Directory_Server
https://www.freeipa.org/page/Kerberos
https://www.freeipa.org/page/PKI
https://www.freeipa.org/page/DNS
https://www.freeipa.org/page/Certmonger
https://www.freeipa.org/page/Web_UI
https://www.freeipa.org/page/Trusts

Linux Kernel Security
Ayush Ambastha

Linux: Kernel

Agenda

● What is a Kernel and why is it important?

● Examples of Security Vulnerabilities

● Various Security Features

● How to Protect Your Linux System

● References

Linux: Kernel

What is a Kernel and why is it important?

● The Linux kernel is the core component of the Linux operating system,

maintaining complete control over everything in the system.

● It is the interface between applications and data processing at the

hardware level, connecting the system hardware to the application

software.

● The kernel manages input/output requests from software, memory,

processes, peripherals and security, among many other functions.

● Security of the kernel determines the security of the Linux operating

system as a whole, as well as the security of every individual system that

runs on Linux.

Linux: Kernel

Examples of Security Vulnerabilities

● CVE-2017-18017: This critical vulnerability, which exists in the netfilter

tcpmss_mangle_packet function, is extremely dangerous because of the

important role that it plays in filtering network communications by

defining the maximum segment size that is allowed for accepting TCP

headers. Without these controls in place, users are susceptible to

overflow issues and DoS attacks.

● CVE-2016-10150: This use-after-free vulnerability affecting Linux kernel

versions prior to 4.8.13 allows users to cause a DoS attack. This flaw

could also be exploited by hackers to gain privileges.

● CVE-2015-8812: This severe vulnerability impacting versions prior to

4.5, which was discovered in the drivers of the Linux kernel, enables

remote attackers to execute arbitrary code or cause a DoS (use-after-

free) via crafted packets.

Linux: Kernel

Security Features

● Discretionary Access Control (DAC)

● Extended DAC

○ POSIX ACLs

○ POSIX Capabilities

● Namespaces

● Network Security

● Cryptography

● Linux Security Modules

● Memory Protection

● Audit

● Integrity Management

Linux: Kernel

Discretionary Access Control (DAC)

● The security features of the Linux kernel have evolved significantly to

meet modern requirements, although DAC remains as the core security

model.

● DAC allows the owner of an object (such as a file) to set the security

policy for that object. For example, create a new file in your home

directory and decide who else may read or write the file.

● This policy is implemented as permission bits attached to the file’s inode.

● Permissions can be set separately for the owner, group and others (i.e.

everyone else) to form a basic Access Control List (ACL).

● The root user (superuser) bypasses DAC policy for the purpose of

managing the system. Running a program as the root user provides that

program with all rights on the system.

Linux: Kernel

POSIX ACLs

● POSIX (Portable Operating System Interface)

● They extend the DAC ACLs to a much finer-grained scheme, allowing

separate permissions for individual users and different groups.

● They’re managed with the setfacl and getfacl commands and the ACLs

are managed on disk via extended attributes.

POSIX Capabilities

● The aim of this feature is to break up the power of the superuser, so that

an application requiring some privilege does not get all privileges.

● The application runs with one or more coarse-grained privileges, such as

CAP_NET_ADMIN for managing network facilities.

● Capabilities for programs may be managed with the setcap and getcap.

● It’s possible to reduce the number of setuid applications on the system

by assigning specific capabilities to them.

Linux: Kernel

Namespaces

● Namespaces are a feature of the Linux kernel that partitions kernel

resources such that one set of processes sees one set of resources

while another set of processes sees a different set of resources.

● This is not primarily a security feature, but is useful for implementing

security.

● One example is where each process can be launched with its own,

private /tmp directory, invisible to other processes, and which works

seamlessly with existing application code. This eliminates the a lot of

security threats that existed because of shared folders among processes.

● Linux Namespaces have been used to help implement multi-level

security, where files are labeled with security classifications, and

potentially entirely hidden from users without an appropriate security

clearance.

Linux: Kernel

Network Security

● Netfilter is a framework provided by the Linux kernel that allows various

networking-related operations to be implemented in the form of

customized handlers. Kernel-level modules may hook into this framework

to examine packets and make security decisions about them.

● `iptables` is one such module, which implements an IPv4 firewalling

scheme, managed via the userland iptables tool. Access control rules for

IPv4 and IPv6 packets are installed into the kernel, and each packet

must pass these rules to proceed through the networking stack.

● The networking stack also includes an implementation of IPsec, which

provides confidentiality and integrity protection of IP networking. It can

be used to implement VPNs, and also point to point security.

● Stateful packet inspection and Network Access Translation (NAT) is also

implemented in the codebase.

Linux: Kernel

Cryptography

● Crypto API is a cryptography framework in the Linux kernel, for various

parts of the kernel that deal with cryptography, such as IPsec and dm-

crypt.

● It provides support for a wide range of cryptographic algorithms and

operating modes, including commonly deployed ciphers, hash functions,

and asymmetric cryptography.

Linux Security Modules

● Linux security module (LSM) is the framework integrated into the kernel

to provide the necessary components to implement the Mandatory

access control (MAC) modules, without having the need to change the

kernel source code every time.

Linux: Kernel

Memory Protection

● Address space layout randomization (ASLR) is a memory-protection

process for operating systems that guards against buffer-overflow

attacks by randomizing the location where system executables are

loaded into memory.

● The success of many cyber attacks, particularly zero-day exploits, relies

on the hacker's ability to know or guess the position of processes and

functions in memory. ASLR is able to put address space targets in

unpredictable locations. If an attacker attempts to exploit an incorrect

address space location, the target application will crash, stopping the

attack and alerting the system.

● It doesn't resolve vulnerabilities, but makes exploiting them more of a

challenge.

Linux: Kernel

Audit

● The Linux Auditing System is a native feature to the Linux kernel that

collects certain types of system activity to facilitate incident investigation.

● The Linux Auditing subsystem is capable of monitoring 3 distinct things:

○ System calls: See which system calls were called, along with

contextual information like the arguments passed to it, user

information, etc.

○ File access: This is an alternative way to monitor file access activity,

rather than directly monitoring the open system call and related calls.

○ Select, pre-configured auditable events within the kernel.

● Using these categories of events, you can audit activity like

authentications, failed cryptographic operations, abnormal terminations,

program execution, and SELinux modifications.

Linux: Kernel

Example of Audit record

type=1300 msg=audit(04/10/2021 13:37:89.567:444): arch=c000003e

syscall=323 success=yes exit=42 a0=feae74 a1=80000 a2=1b6 a3=9434e28

items=1 ppid=1337 pid=1812 auid=300 uid=500 gid=500 euid=0 suid=0 fsuid=0

egid=500 sgid=500 fsgid=500 tty=pts2 ses=2 comm=”sudo” exe=”/usr/bin/sudo”

subj=unconfined_u:unconfined_r:unconfined_t:20-s0:c0.c1023 key=”test_audit”

● User with auid 300

● Used an ssh terminal to use the sudo command

● Invoked the userfaultfd syscall as root

● Date - April 10th, 2021 at 13:37 GMT.

You can see how this level of detail can be useful for inspecting system

behavior during incident response and building a timeline of activity.

Linux: Kernel

Integrity Management

● The Integrity Measurement Architecture (IMA) component performs

runtime integrity measurements of files using cryptographic hashes,

comparing them with a list of valid hashes.

● The list itself may be verified via an aggregate hash stored in the TPM.

Measurements performed by IMA may be logged via the audit

subsystem, and also used for remote attestation, where an external

system verifies their correctness.

● IMA may also be used for local integrity enforcement via the Appraisal

extension. Valid measured hashes of files are stored as extended

attributes with the files, and subsequently checked on access.

● If a file has been modified, IMA may be configured via policy to deny

access to the file. The Digital Signature extension allows IMA to verify the

authenticity of files in addition to integrity by checking RSA-signed

measurement hashes.

Linux: Kernel

Keylime

● Keylime is a CNCF (Cloud Native Computing Foundation) hosted project

that provides a highly scalable remote boot attestation and runtime

integrity measurement solution. Keylime enables users to monitor remote

nodes using a hardware based cryptographic root of trust (TPM).

● With IMA (Integrity Measurement Architecture) - it monitors the runtime

environment as the system calls are made. IMA makes a cryptographic

hash of the obj and keylime compares that to a whitelist of a trusted

states.

Linux: Kernel

How to Protect Your Linux System

● Update your system frequently

● When using a stable version, plan ahead and upgrade to the next version

before official support is ended

● Implement proper firewall filtering policies

● Disable direct memory access (DMA) to prevent DMA attacks

● Create regular backups

● Set up system monitoring tools to avoid downtime

Linux: Kernel

References

● https://www.kernel.org/doc/html/latest/

● https://www.linux.com/training-tutorials/overview-linux-kernel-security-

features/

● “How ASLR protects Linux systems from buffer overflow attacks”, Sandra

Henry-Stocker, Network World, JAN 8, 2019.

● https://linuxsecurity.com/features/features/linux-kernel-security-in-a-

nutshell-how-to-secure-your-linux-system

● https://resources.whitesourcesoftware.com/blog-whitesource/top-10-

linux-kernel-vulnerabilities

● https://keylime-docs.readthedocs.io/en/latest/index.html

● https://github.com/keylime/keylime

https://www.kernel.org/doc/html/latest/
https://www.linux.com/training-tutorials/overview-linux-kernel-security-features/
https://linuxsecurity.com/features/features/linux-kernel-security-in-a-nutshell-how-to-secure-your-linux-system
https://resources.whitesourcesoftware.com/blog-whitesource/top-10-linux-kernel-vulnerabilities
https://keylime-docs.readthedocs.io/en/latest/index.html
https://github.com/keylime/keylime

SELinux
Azzam Alaseed

Linux: SELinux

Agenda

- Overview

- Architecture

- Supported AC models

- Contexts, Subjects, and Objects

- SELinux Policies

- Application support

- SELinux for Android

- Alternatives

Overview

- Brief History

○ Originally started as an extension on top of the Mach kernel by the University of Utah

and the US Department of Defense as separate project.

○ The NSA later enhanced the project and made the switch to Linux.

○ Merged into mainline Linux kernel in 2001.

- What is SELinux?

○ “Security-Enhanced Linux (SELinux) is a security architecture for Linux Systems that

allows administrators to have more control over who can access the system.” -

RedHat

○ “A mandatory access control mechanism in the Linux kernel that checks for allowed

operations after standard discretionary access controls are checked. It can enforce

rules on files and processes in a Linux system, and on the actions they perform,

based on defined policies” - NSA

Linux: SELinux

Overview

- What does it do?

○ SELinux attempts to provide information separation at the OS level.

○ Enforcement of this separation is based on the confidentiality and integrity requirements

provided by the SELinux policy.

○ Help prevent information tampering and application security mechanisms bypassing.

○ Provide a confinement architecture that can limit the damage to a number of resources.

○ Incorporate a strong and flexible MAC architecture.

○ More importantly makes chmod 777 secret_file less damaging.

Linux: SELinux

Architecture (High Level)

Linux: SELinux

Source: https://github.com/SELinuxProject/selinux-notebook

Architecture

- SELinux implements a Flask architecture

○ Flask stands for Flux Advanced Security Kernel.

○ In simple terms: it is an OS security architecture that provides flexible support for

security policies.

- SELinux Components

○ Subjects.

○ Object Manager.

○ Security Server.

○ Security Policy.

○ Access Vector Cache (AVC).

Linux: SELinux

Supported AC Models

- Mandatory Access Control

(MAC)

○ SELinux lets you deploy a fully

functional Bell–LaPadula AC

Model when running in MLS.

■ MLS has 16 levels.

○ SELinux provides a way to get

isolation by using MCS.

■ MCS has 1024 levels.

Linux: SELinux

Source: https://github.com/SELinuxProject/selinux-notebook

Supported AC Models

- Role-Based Access Control

(RBAC)

○ SELinux lets you deploy a role-

based AC policy using Type

Enforcement.

○ All subjects and objects have a

type identifier associated to them.

○ Types are basically protection

domains.

Linux: SELinux
Source: https://wiki.gentoo.org/wiki/SELinux/Role-based_access_control

Contexts, Subjects, and Objects

- Contexts

○ Security Context is the glue that

holds it together.

○ Security Contexts comprise four

fields:

■ User.

■ Role.

■ Type.

■ Range.

Linux: SELinux

Contexts, Subjects, and Objects

- Subjects

○ In SELinux a subject is an active

entity that can cause information to

flow between objects.

○ Subjects in SELinux have a

security context associated with

them.

○ Subjects can transition between

domains when allowed by policy..

○ Kinds of subjects in SELinux:

■ Trusted.

■ Untrusted.

Linux: SELinux

Contexts, Subjects, and Objects

- Objects

○ In SELinux an object is a

resource that is accessed by

subjects.

○ Objects in SELinux consists of

class identifier and an access

vector.

○ Objects can labeled with the

desired type (domain).

○ Moved objects maintain their type

while copied objects take the

target type.

○ Objects can transition between

domains.

Linux: SELinux

SELinux Policies

- Policies in terms of functionality

○ Minimum: small set of daemons are confined within their domains.

○ Targeted: more daemons, areas, and users are confined.

○ MLS: enable support for multi-level security with labels and clearances.

- What if you want more?

○ SELinux has tools for:

■ Standard policies have switches allowing you to turn some features on or off.

■ semanage lets add more rule to your currently active policy.

■ Build a policy from the source that best fits your needs.

Linux: SELinux

Application Support

- Networking Support

○ SELinux has two hooks for controlling
network access:

■ Socket level

● The netif class to restrict
interfaces.

● The node class to restrict
IP addresses.

● The <proto>_socket
classes to restrict
protocols.

■ Packet processing level

● SECMARK extension.

● IPv4 CIPSO / IPv6
CALIPSO.

● Labeled IPSec.

Linux: SELinux

Source: https://github.com/SELinuxProject/selinux-notebook

Application Support

- Virtual Machine Support

○ SELinux is supported by Linux KVM and

QEMU.

○ Xen has its own security module (XSM):

■ Prevent two domains from

communicating.

■ Grant a set of privileges to

unprivileged domains.

■ Control domain’s ability to use

device passthrough.

■ Restrict or audit operations.

■ Prevent privileged domains from

mapping memory pages.

■ Isolate the hypervisor

components.

Linux: SELinux

Source: https://github.com/SELinuxProject/selinux-notebook

Application Support

- X-Windows Support

○ Fine-grained access control to X-

Server objects.

- PostgreSQL Support

○ Adds MAC to database objects.

- Apache Support

○ Allows a web application (child

process) to run with smaller set of

privileges than Apache (the parent)

using typebounds.

Linux: SELinux

Source: https://github.com/SELinuxProject/selinux-notebook

SE for Android

- Hooks in the various Android classes.

○ Builds in top of SELinux.

○ Per-file labeling.

○ Flexible labeling of Apps.

○ Java JNI Bindings to provide SELinux functionality to

Android Apps.

○ Confinement of system services.

Linux: SELinux

Alternatives

- AppArmor.

○ Uses profiles to specify access control for processes.

○ Works on any filesystem.

○ Enforcement is based on file path and not the inode.

- SMACK.

○ Less granular access control.

○ Suitable for embedded/IoT devices.

Linux: SELinux

References (SELinux)

- https://github.com/SELinuxProject

- https://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf

- https://www.sans.org/reading-room/whitepapers/linux/introduction-nsas-security-enhanced-

linux-selinux-232

- https://www.cs.utah.edu/flux/fluke/html/flask.html

- http://www.selinuxproject.org/page/Main_Page

- https://www.starlab.io/blog/a-brief-tour-of-linux-security-modules

- http://www.asprom.com/technologie/mentorpaper_4.pdf

- https://wiki.gentoo.org/wiki/SELinux/Role-based_access_control

- https://www.electronicsweekly.com/blogs/eyes-on-android/what-is/se-android-2013-03/

- https://wiki.xenproject.org/wiki/Xen_Security_Modules_:_XSM-FLASK

Linux: SELinux

https://github.com/SELinuxProject
https://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
https://www.sans.org/reading-room/whitepapers/linux/introduction-nsas-security-enhanced-linux-selinux-232
https://www.cs.utah.edu/flux/fluke/html/flask.html
http://www.selinuxproject.org/page/Main_Page
https://www.starlab.io/blog/a-brief-tour-of-linux-security-modules
http://www.asprom.com/technologie/mentorpaper_4.pdf
https://wiki.gentoo.org/wiki/SELinux/Role-based_access_control
https://www.electronicsweekly.com/blogs/eyes-on-android/what-is/se-android-2013-03/
https://wiki.xenproject.org/wiki/Xen_Security_Modules_:_XSM-FLASK

DSci526:

Secure Systems Administration

Accreditation and Acceptance Testing

Prof. Clifford Neuman

Lecture 12
14 April 2021
Online

DSci526:

Secure Systems Administration

Accreditation and Acceptance Testing

Prof. Clifford Neuman

Lecture 12
14 April 2021
Online

Configuration Management
Change Management

• Acceptance Testing is a component of

change management, which is itself part of

configuration management.
– Deciding whether it is acceptable to run a newly

acquired software or hardware system.

– It should include a security component, although

more often focused on functional requirements.

Acceptance Based on

• Certification
– Evaluation and testing to demonstrate the system

demonstrates certain properties or meets various
development or testing metrics.

• Accreditation
– An assessment that the system is suitable to access

specific data, and in a particular environment.

• Acceptance Testing
– Testing in the context of your system to demonstrate

conformance to functional and security criteria. This is
usually a final step before payment is made and the
system is granted authority to operate on live data.

Acceptance Testing

• Applied to systems purchased (usually as

custom developed by another organization).
– Why not develop in house:

• Cost
– Cheaper to buy components and systems than to design and

build from scratch.

• Convenience/ Expertise
– Creator might recognize it is easier to buy a component or

system already on the market than design one

– Creator might recognize they do not have the expertise to design

the needed system

– You must still develop or acquire the expertise to

evaluate the security of the system.

Trust of your systems (scenarios)

• Trust by own design

• Trust by using trusted supplier

• Trust by testing

Trust By Own Design

• Least risk that something malicious will be

introduced to the system.
– Often greater risk that security flaws remain.

– Trust depends on the confidence in design/development.

• You will likely end up relying at least on hardware

obtained elsewhere, unless you have significant

capabilities to build your own chips.

Trust By Using Trusted Supplier:
Accreditation

• Obtain components, subsystems or entire

systems from a proven, trusted supplier.
– Approved for access to your data, and your environment.

– Supplier has proven over time to provide functional,

secure products (maturity)

– Trust can be gained through reputation of product or

supplier

• Concern: Supply Chain Attacks

Trust By Testing:
Acceptance Testing

• For component, subsystem or system not trusted

either by design or coming from a trusted supplier.
– Or as additional testing before “going live”

– Traditionally focused on Functionality Testing

– Should include Security Testing

Authorization Process within Air Force

• Other branches of military use similar processes,

also similar processes for functionality. Will focus

on Cyber Security process

• Goal: Obtain ATO (Authorized to Operate) or ATC

(Authorized to Connect)

– ATO typically for Aircraft, ATC typically for

support equipment

• Process for Cyber Security: Risk management

Framework (RMF)

Risk Management Framework

• 1. Categorize System

• 2. Select Security Controls

• 3. Implement Security Controls

• 4. Assess Security Controls

• 5. Authorize Information Systems

• 6. Monitor Security Controls

1. Categorize System

• A categorization package is created that describes the

system

• System Architecture, Data Flows and an initial risk

assessment (mainly documenting possible threats to the

system) are created.

• There are different authorizing officials (AO) and technical

advisors for different types of systems

2. Select Security Controls

• Security Controls are Security Mechanisms
– Technical Controls- Ex. Lock out user after 3 incorrect logins

– Operational Controls- Ex. System not to be used for

unauthorized purposes

– Management Controls- Ex. Incident Response

• Baseline List of Security Controls created by NIST

• Each directorate (system type) has a general guideline to

what security controls are applicable to that type of system

• Program will use these guidelines to create a list of the

security controls applicable to their system

3. Implement Security Controls

• Take the controls chosen to be applicable to the

system and implement them, if not already

already implemented

• Update documents for system architecture,

software and hardware lists to include new

security controls

4. Assess Security Controls

• Test (and document) results of security controls

• This mainly is used for technical security controls

• Risk assessment is now updated with vulnerabilities

(security controls that have not been implemented).

Vulnerabilities that have a threat matched to them

produce a risk.

• Risk is evaluated and proven to show it is at an

acceptable level (or there are actions that can be taken to

lower the risk to an acceptable level)

4. Assess Security Controls

• This is where accreditation & acceptance testing comes in

• For most companies equipment is bought, not built.

Testing is vital to ensure equipment behaves as needed.

• If the system plans to use a commonly used piece of

equipment generally less testing is needed (system or

component may already be accredited for environment).

• However, if a program is planning on using a unique piece

of equipment, more testing is needed (acceptance testing)

4. Assess Security Controls

• Any unique equipment needs more analysis to decide if it

is secure. Acceptance is not just based on the equipment

itself, but also the maintenance and other factors

5. Authorize Information Systems

• Risk Assessment and POAM (plan of action and

milestones) are presented to an Authorizing Official

• Authorizing Official either decides risk is acceptable (and

assumes the risk) and gives program an ATO, or decides

risk is unacceptable and more security needs to be

implemented to the system.

• Authorizing Official is familiar if equipment is accredited or

not, can tell program office more acceptance testing is

needed.

6. Monitor Security Controls

• Once system is given ATO, program must now

monitor that the security controls are being

implemented properly

• ATO’s must be renewed (typically one or two

years)

• Program continuously goes through RMF process

(skipping step 1), sometimes having to select new

updated security controls

Authorization Process: Accreditation

• Accreditation works in two ways within the

authorization process

• 1. Accreditation of components or subsystems

being bought requires less acceptance testing.

• 2. ATO is an accreditation. Once system receives

ATO, it is accredited that all of the organization

will recognize this system’s ability to operate

securely for a defined environment.

Accreditation and Acceptance Testing
in Industry

• Industries also must perform some sort of testing on

products they buy

• However, industries typically put more emphasis on

functionality and availability than security (Microsoft

acceptance testing example)

• Accreditation in industry is related to who a company will

purchase from

• Acceptance Testing in industry used more as a way to

validate a contract and provide payment

Accreditation in Industry

• Industries tend to buy from established

companies that have proven to provide products

that work

• Example: Microsoft Office

• However, this also applies to when companies

need new software built for them.

100

Accreditation in Industry

• Software purchase agreements are made

whenever a company is purchasing software.

• Accreditation comes into play in a couple of

ways.

• 1. Company might only be willing to buy

software from an accredited source

• 2. Company might give me leeway on a contract

given to an accredited source (in how much

acceptance testing is needed before

101

Acceptance Testing in Industry

• Companies often provide contracts to a different

company to build something they need.

• Acceptance Testing is used to:

• 1. Keep the company on contract on track

• 2. Provide a concrete way to test the product, if it

does not pass the tests the company won’t get

paid the full amount

102

Acceptance Testing in Industry

• For a big system, acceptance testing is very

important

• A company will provide in the contract tests it will

perform on the product before the final purchase

is made.

• Typically functionality related, but security is

becoming a bigger part.

103

Microsoft Acceptance Testing

Apple Acceptance Testing

• Looking for user acceptance testing

• This implies functionality (a long with usability)

• Security acceptance testing is also done, and a

list of certifications and validations can be found

online (link provided shows acceptance testing

and certificates for cryptographic methods used

in iOS).
– https://support.apple.com/en-us/HT202739

Accreditation and Acceptance Testing

• Accreditation is used to provide trust without the

need for additional (possibly costly) testing

• Acceptance Testing provides trust that is absent

when no accreditation is in place.

DSci526:

Secure Systems Administration

Case Studies in Administration

Prof. Clifford Neuman

Lecture 12
14 April 2021
Online

Assigned Reading For 21 April

• Please skim and read the introduction and
relevant sections (the ones labeled FY 2018
Inspector General FISMA Report) from:
– FEDERAL CYBERSECURITY: AMERICA’S DATA AT

RISK STAFF REPORT PERMANENT SUBCOMMITTEE
ON INVESTIGATIONS UNITED STATES SENATE

– We will use this as the basis of discussion of case studies of
unsecure system administration.

– Please think about which aspects of secure system
administration as covered in this class were not properly
applied, and what should be done instead.

https://www.hsdl.org/?view&did=826715

For Discussion Now

Report shows failures at eight US agencies in

following cyber-security protocols

• US Senate report finds appallingly bad cyber-

security practices at eight US government

agencies.
– ZDNet – June 26 2019

– Catalin Cimpanu for Zero Day

https://www.zdnet.com/article/report-shows-failures-at-eight-us-agencies-in-following-cyber-security-protocols/

DSci526:
Secure Systems Administration

Second Group Project
Third Week Discussion

Prof. Clifford Neuman

Lecture 12
14 April 2021
Online

Wrapping up Project Two

• It is time to wrap up exercise Two. By Monday 26 April - each group should

prepare a report describing:
– User documentation for their application (high level)

– Their network and server architecture (what servers are on what VM’s and how

they are interconnected)

– A risk assessment/vulnerability analysis enumerating the risks, explaining the

mitigation of those risks, and listing those threats that are not defended against

(i.e. where you accept the risks).

– A description of the steps taken for pen testing of your system.

– On Wednesday 28 April, your team will have 25 minutes to present this summary

to the entire class (this time, no withholding of information from the other team)

– This week and next, basic 5 minute presentation, and Break Out Groups.

• We will use time in the final lecture to demonstrate the operation of your

systems.
– Please prepare a list of tests (with appropriate scripts) that you believe should be run against

your system, and the other team’s system, and send me that list of tests by Monday 26 April.

111

Teams for Second Group Project

• Team One

– Shagun Bhatia

– Anthony Cassar

– Sarahzin Chowdhury

– Tejas Kumar Pandey

– Pratyush Prakhar

– Christopher Samayoa

– Louis Uuh

– Ayush Ambastha

– Jason Ghetian

– Abhishek Tatti

– MaryLiza Walker

– Hanzhou Zhang

• Team Two

– Azzam Alsaeed

– Marco Gomez

– Alejandro Najera

– Doug Platt

– Carol Varkey

– Yang Xue

– Aditya Goindi

– Malavika Prabhakar

– Dwayne Robinson

– Amarbir Singh

– Shanice Williams

Second Exercise - Criminal Enterprises

• Chosen because of differences in the high-level

principles.
– Not because I expect you to implement these kinds of systems in your future endeavors.

– But you may be called upon to break some of these systems if later employed by government organizations.

• Your organization must:
– Accept Bitcoin as payment (not really, but it must accept something that stands in for bitcoin)

– Manage an inventory of stolen account identifiers with passwords
• Enable the sale of collection of such information in exchange for your stand-in for bitcoin

• Control access to such information

– Prevent collection of evidence or intelligence by third parties.

– Note, do not deal in any illegal goods, but use dummy information to stand in for such goods. Also,

do not use terms associated with such illegal goods or information in communications, make up

new names for this dummy information.

113

